资讯首页 >> 技术资讯 >> 详细内容

认识与了解"氮化镓"

(2015-3-25 15:57:30)  2211人次浏览
 
     中文名称:氮化镓
  英文名称:gallium(iii)nitride
  英文别名:Gallium nitride;nitridogallium;gallium nitrogen(-3)anion
  CAS号:25617-97-4
  EINECS号:247-129-0
  分子式:GaN
  分子量:83.7297
  熔点:800℃
  密度:6.1

  简介
  GaN材料的研究与应用是目前全球半导体研究的前沿和热点,是研制微电子器件、光电子器件的新型半导体材料,并与SIC、金刚石等半导体材料一起,被誉为是继第一代Ge、Si半导体材料、第二代GaAs、InP化合物半导体材料之后的第三代半导体材料。它具有宽的直接带隙、强的原子键、高的热导率、化学稳定性好(几乎不被任何酸腐蚀)等性质和强的抗辐照能力,在光电子、高温大功率器件和高频微波器件应用方面有着广阔的前景。
  这是一种具有较大禁带宽度的半导体,属于所谓宽禁带半导体之列。它是微波功率晶体管的优良材料,也是蓝色光发光器件中的一种具有重要应用价值的半导体。

  材料特性
  总述:GaN是极稳定的化合物,又是坚硬的高熔点材料,熔点约为1700℃,GaN具有高的电离度,在Ⅲ-Ⅴ族化合物中是最高的(0.5或0.43)。在大气压力下,GaN晶体一般是六方纤锌矿结构。它在一个元胞中有4个原子,原子体积大约为GaAs的一半。因为其硬度高,又是一种良好的涂层保护材料。
  化学特性:在室温下,GaN不溶于水、酸和碱,而在热的碱溶液中以非常缓慢的速度溶解。NaOH、H2SO4和H3PO4能较快地腐蚀质量差的GaN,可用于这些质量不高的GaN晶体的缺陷检测。GaN在HCL或H2气下,在高温下呈现不稳定特性,而在N2气下最为稳定。
  结构特性:表1列出了纤锌矿GaN和闪锌矿GaN的特性比较。
  电学特性:GaN的电学特性是影响器件的主要因素。未有意掺杂的GaN在各种情况下都呈n型,最好的样品的电子浓度约为4×1016/cm3。一般情况下所制备的P型样品,都是高补偿的。
  很多研究小组都从事过这方面的研究工作,其中中村报道了GaN最高迁移率数据在室温和液氮温度下分别为μn=600cm2/v.s和μn=1500cm2/v.s,相应的载流子浓度为n=4×1016/cm3和n=8×1015/cm3。近年报道的MOCVD沉积GaN层的电子浓度数值为4×1016/cm3、<1016/cm3;等离子激活MBE的结果为8×103/cm3、<1017/cm3。
  未掺杂载流子浓度可控制在1014~1020/cm3范围。另外,通过P型掺杂工艺和Mg的低能电子束辐照或热退火处理,已能将掺杂浓度控制在1011~1020/cm3范围。
  光学特性:人们关注的GaN的特性,旨在它在蓝光和紫光发射器件上的应用。Maruska和Tietjen首先精确地测量了GaN直接隙能量为3.39eV。几个小组研究了GaN带隙与温度的依赖关系,Pankove等人估算了一个带隙温度系数的经验公式:dE/dT=-6.0×10-4eV/k。 Monemar测定了基本的带隙为3.503eV±0.0005eV,在1.6kT为Eg=3.503+(5.08×10-4T2)/(T-996)eV。另外,还有不少人研究GaN的光学特性。

  材料生长
  GaN材料的生长是在高温下,通过TMGa分解出的Ga与NH3的化学反应实现的,其可逆的反应方程式为:
  Ga+NH3=GaN+3/2H2
  生长GaN需要一定的生长温度,且需要一定的NH3分压。人们通常采用的方法有常规MOCVD(包括APMOCVD、LPMOCVD)、等离子体增强MOCVD(PE-MOCVD)和电子回旋共振辅助MBE等。所需的温度和NH3分压依次减少。本工作采用的设备是AP—MOCVD,反应器为卧式,并经过特殊设计改装。用国产的高纯TMGa及NH3作为源程序材料,用DeZn作为P型掺杂源,用(0001)蓝宝石与(111)硅作为衬底采用高频感应加热,以低阻硅作为发热体,用高纯H2作为MO源的携带气体。用高纯N2作为生长区的调节。用HALL测量、双晶衍射以及室温PL光谱作为GaN的质量表征。要想生长出完美的GaN,存在两个关键性问题,一是如何能避免NH3和TMGa的强烈寄生反应,使两反应物比较完全地沉积于蓝宝石和Si衬底上,二是怎样生长完美的单晶。为了实现第一个目的,设计了多种气流模型和多种形式的反应器,最后终于摸索出独特的反应器结构,通过调节器TMGa管道与衬底的距离,在衬底上生长出了GaN。同时为了确保GaN的质量及重复性,采用硅基座作为加热体,防止了高温下NH3和石墨在高温下的剧烈反应。对于第二个问题,采用常规两步生长法,经过高温处理的蓝宝石材料,在550℃,首先生长250A0左右的GaN缓冲层,而后在1050℃生长完美的GaN单晶材料。对于 Si衬底上生长GaN单晶,首先在1150℃生长AlN缓冲层,而后生长GaN结晶。生长该材料的典型条件如下:
  NH3:3L/min
  TMGa:20μmol/minV/Ⅲ=6500
  N2:3~4L/min
  H2:2<1L/min
  人们普遍采用Mg作为掺杂剂生长P型GaN,然而将材料生长完毕后要在800℃左右和在N2的气氛下进行高温退火,才能实现P型掺杂。本实验采用 Zn作掺杂剂,DeZ2n/TMGa=0.15,生长温度为950℃,将高温生长的GaN单晶随炉降温,Zn具有P型掺杂的能力,因此在本征浓度较低时,可望实现P型掺杂。
  但是,MOCVD使用的Ga源是TMGa,也有副反应物产生,对GaN膜生长有害,而且,高温下生长,虽然对膜生长有好处,但也容易造成扩散和多相膜的相分离。中村等人改进了MOCVD装置,他们首先使用了TWO—FLOWMOCVD(双束流MOCVD)技术,并应用此法作了大量的研究工作,取得成功。双束流MOCVD生长示意图如图1所示。反应器中由一个H2+NH3+TMGa组成的主气流,它以高速通过石英喷平行于衬底通入,另一路由H2+N2 形成辅气流垂直喷向衬底表面,目的是改变主气流的方向,使反应剂与衬底表面很好接触。用这种方法直接在α—Al2O3基板(C面)生长的GaN膜,电子载流子浓度为1×1018/cm3,迁移率为200cm2/v·s,这是直接生长GaN膜的最好值。

  材料应用
  新型电子器件:GaN材料系列具有低的热产生率和高的击穿电场,是研制高温大功率电子器件和高频微波器件的重要材料。目前,随着 MBE技术在GaN材料应用中的进展和关键薄膜生长技术的突破,成功地生长出了GaN多种异质结构。用GaN材料制备出了金属场效应晶体管(MESFET)、异质结场效应晶体管(HFET)、调制掺杂场效应晶体管(MODFET)等新型器件。调制掺杂的AlGaN/GaN结构具有高的电子迁移率(2000cm2/v.s)、高的饱和速度(1×107cm/s)、较低的介电常数,是制作微波器件的优先材料;GaN较宽的禁带宽度(3.4eV) 及蓝宝石等材料作衬底,散热性能好,有利于器件在大功率条件下工作。
  光电器件:GaN材料系列是一种理想的短波长发光器件材料,GaN及其合金的带隙覆盖了从红色到紫外的光谱范围。自从1991年日本研制出同质结GaN蓝色 LED之后,InGaN/AlGaN双异质结超亮度蓝色LED、InGaN单量子阱GaNLED相继问世。目前,Zcd和6cd单量子阱GaN蓝色和绿色 LED已进入大批量生产阶段,从而填补了市场上蓝色LED多年的空白。以发光效率为标志的LED发展历程见图3。蓝色发光器件在高密度光盘的信息存取、全光显示、激光打印机等领域有着巨大的应用市场。随着对Ⅲ族氮化物材料和器件研究与开发工作的不断深入,GaInN超高度蓝光、绿光LED技术已经实现商品化,现在世界各大公司和研究机构都纷纷投入巨资加入到开发蓝光LED的竞争行列。
  1993年,Nichia公司首先研制成发光亮度超过lcd的高亮度GaInN/AlGaN异质结蓝光LED,使用掺Zn的GaInN作为有源层,外量子效率达到2.7%,峰值波长450nm,并实现产品的商品化。1995年,该公司又推出了光输出功率为2.0mW,亮度为6cd商品化GaN绿光 LED产品,其峰值波长为525nm,半峰宽为40nm。最近,该公司利用其蓝光LED和磷光技术,又推出了白光固体发光器件产品,其色温为6500K,效率达7.5流明/W。除Nichia公司以外,HP、Cree等公司相继推出了各自的高亮度蓝光LED产品。高亮度LED的市场预计将从1998年的 3.86亿美元跃升为2003年的10亿美元。高亮度LED的应用主要包括汽车照明,交通信号和室外路标,平板金色显示,高密度DVD存储,蓝绿光对潜通信等。
  在成功开发Ⅲ族氮化物蓝光LED之后,研究的重点开始转向Ⅲ族氮化物蓝光LED器件的开发。蓝光LED在光控测和信息的高密度光存储等领域具有广阔的应用前景。目前Nichia公司在GaN蓝光LED领域居世界领先地位,其GaN蓝光LED室温下2mW连续工作的寿命突破10000小时。HP公司以蓝宝石为衬底,研制成功光脊波导折射率导引GaInN/AlGaN多量子阱蓝光LED。Cree公司和Fujitsu公司采用SiC作为衬底材料,开发Ⅲ 族氮化物蓝光LED,CreeResearch公司首家报道了SiC上制作的CWRT蓝光激光器,该激光器彩霞的是横
  向器件结构。富士通继Nichia,Cree Research和索尼等公司之后,宣布研制成了InGaN蓝光激光器,该激光器可在室温下CW应用,其结构是在SiC衬底上生长的,并且采用了垂直传导结构(P型和n型接触分别制作在晶片的顶面和背面),这是首次报道的垂直器件结构的CW蓝光激光器。
  在探测器方面,已研制出GaN紫外探测器,波长为369nm,其响应速度与Si探测器不相上下。但这方面的研究还处于起步阶段。GaN探测器将在火焰探测、导弹预警等方面有重要应用。
  应用前景:对于GaN材料,长期以来由于衬底单晶没有解决,异质外延缺陷密度相当高,但是器件水平已可实用化。1994年日亚化学所制成1200mcd的 LED,1995年又制成Zcd蓝光(450nmLED),绿光12cd(520nmLED);日本1998年制定一个采用宽禁带氮化物材料开发LED的 7年规划,其目标是到2005年研制密封在荧光管内、并能发出白色光的高能量紫外光LED,这种白色LED的功耗仅为白炽灯的1/8,是荧光灯的1/2, 其寿命是传统荧光灯的50倍~100倍。这证明GaN材料的研制工作已取相当成功,并进入了实用化阶段。InGaN系合金的生成,InGaN/AlGaN 双质结LED,InGaN单量子阱LED,InGaN多量子阱LED等相继开发成功。InGaNSQWLED6cd高亮度纯绿茶色、2cd高亮度蓝色 LED已制作出来,今后,与AlGaP、AlGaAs系红色LED组合形成亮亮度全色显示就可实现。这样三原色混成的白色光光源也打开新的应用领域,以高可靠、长寿命LED为特征的时代就会到来。日光灯和电灯泡都将会被LED所替代。LED将成为主导产品,GaN晶体管也将随材料生长和器件工艺的发展而迅猛发展,成为新一代高温度频大功率器件。

  缺点和问题
  一方面,在理论上由于其能带结构的关系,其中载流子的有效质量较大,输运性质较差,则低电场迁移率低,高频性能差。
  另一方面,现在用异质外延(以蓝宝石和SiC作为衬底)技术生长出的GaN单晶,还不太令人满意(这有碍于GaN器件的发展),例如位错密度达到了108~1010/cm2(虽然蓝宝石和SiC与GaN的晶体结构相似,但仍然有比较大的晶格失配和热失配);未掺杂GaN的室温背景载流子(电子)浓度高达1017cm-3(可能与N空位、替位式Si、替位式O等有关),并呈现出n型导电;虽然容易实现n型掺杂(掺Si可得到电子浓度1015~1020/cm3、室温迁移率>300cm2/V.s 的n型GaN),但p型掺杂水平太低(主要是掺Mg),所得空穴浓度只有1017~1018/cm3,迁移率<10cm2/V.s,掺杂效率只有0.1%~1%(可能是H的补偿和Mg的自身电离能较高所致)。

  优点与长处
  ①禁带宽度大(3.4eV),热导率高(1.3W/cm-K),则工作温度高,击穿电压高,抗辐射能力强;
  ②导带底在Γ点,而且与导带的其他能谷之间能量差大,则不易产生谷间散射,从而能得到很高的强场漂移速度(电子漂移速度不易饱和);
  ③GaN易与AlN、InN等构成混晶,能制成各种异质结构,已经得到了低温下迁移率达到105cm2/Vs的2-DEG(因为2-DEG面密度较高,有效地屏蔽了光学声子散射、电离杂质散射和压电散射等因素);
  ④晶格对称性比较低(为六方纤锌矿结构或四方亚稳的闪锌矿结构),具有很强的压电性(非中心对称所致)和铁电性(沿六方c轴自发极化):在异质结界面附近产生很强的压电极化(极化电场达2MV/cm)和自发极化(极化电场达3MV/cm),感生出极高密度的界面电荷,强烈调制了异质结的能带结构,加强了对2-DEG的二维空间限制,从而提高了2-DEG的面密度(在AlGaN/GaN异质结中可达到1013/cm2,这比AlGaAs/GaAs异质结中的高一个数量级),这对器件工作很有意义。
  总之,从整体来看,GaN的优点弥补了其缺点,特别是通过异质结的作用,其有效输运性能并不亚于GaAs,而制作微波功率器件的效果(微波输出功率密度上)还往往要远优于现有的一切半导体材料。

  主要问题
  因为GaN是宽禁带半导体,极性太大,则较难以通过高掺杂来获得较好的金属-半导体的欧姆接触,这是GaN器件制造中的一个难题,故GaN器件性能的好坏往往与欧姆接触的制作结果有关。现在比较好的一种解决办法就是采用异质结,首先让禁带宽度逐渐过渡到较小一些,然后再采用高掺杂来实现欧姆接触,但这种工艺较复杂。总之,欧姆接触是GaN器件制造中需要很好解决的一个主要问题。

  GaN功率器件将成功率电子应用首选技术方案
  摘要:首先从器件性能和成本等方面分析了为何GaN功率器件是未来功率电子应用的首选技术方案,GaN功率器件具有无可比拟的性能优势,通过采用价格低且口径大的Si衬底,有望实现与硅功率器件相当的价格。
  其次,简要介绍了GaN功率器件的市场和行业发展现状,市场空间很大,除了专注GaN的新进公司外,世界排名靠前的功率半导体企业也纷纷涉足。
  随后,从材料、器件技术、功率集成技术和可靠性四个方面分别简要介绍了GaN功率器件的技术发展现状。
  最后,简要列举了部分企业推出GaN功率器件产品的现状。

  一、引言
  近年来GaN功率器件已经成为了学术界和工业界共同关注和着力研发的热点,特别是Si基GaN功率器件已成为GaN在未来功率电子应用中的首选技术方案,原因如下:
  从理论上来讲,与硅类功率器件的性能相比,GaN功率器件的性能具有十分明显的优势。首先,转换效率很高,GaN的禁带宽度是硅的3倍,临界击穿电场是硅10倍,因此,同样额定电压的GaN功率器件的导通电阻比硅器件低1000倍左右,大大降低了开关的导通损耗;其次,工作频率很高,GaN的电子渡越时间比硅低10倍,电子速度比在硅中高2倍以上,反向恢复时间基本可以忽略,因此GaN开关功率器件的工作频率可以比硅器件提升至少20倍,大大减小了电路中储能元件如电容、电感的体积,从而成倍地减小设备体积,减少铜等贵重原材料消耗,开关频率高还能减少开关损耗,进一步降低电源总的能耗;第三,工作温度很高,GaN的禁带宽度高达3.4eV,本征电子浓度极低,电子很难被激发,因此理论上GaN器件可以工作在800℃以上的高温。
  除了上述的GaN功率器件本身的性能优势外,还有如下原因:
  首先,Si的价格低,具有明显的价格优势;
  其次,通过外延技术可在更大尺寸的Si 衬底上得到GaN 外延片,为GaN 功率器件的产业化与商业化提供了更大的成本优势;
  第三,大尺寸的GaN-on-Si晶圆可使用已有的成熟的Si 工艺技术和设备,实现大批量的低成本的GaN 器件制造;
  最后,Si基GaN器件可与Si基的光电器件和数控电路等集成,利于形成直接面对终端应用的功能性模块。

  二、市场和行业发展现状
  据Yole Developpement的报告“Power GaN 2012”,GaN功率器件有巨大的市场空间,2011年半导体功率器件市场空间约为177亿,预计到2020年该市场空间会增加8.1%,达到357亿。
  应用GaN功率器件的电源市场可能在2014年启动,然后迎来一个高速发展期,到2020年,不含国防预算有望实现20亿美元的销售。
  目前,50%功率器件的生产线是6英寸的,很多工厂正在转投8英寸生产线,2011年Infineon成为第一家引进12英寸生产线的工厂。GaN功率器件也进入了发展期,除了专注GaN的新进公司(如:EPC、Transphorm和Micro GaN等)外,世界排名靠前的功率半导体企业也纷纷介入GaN功率器件,有曾做硅的企业如IR、Furukawa、Toshiba和Sanken等,有曾做化合物半导体的企业如Infineon、RFMD、Fujitsu和NXP等,有做LED和功率器件的企业如Panasonic、Sumsung、LG和Sharp等。对于GaN功率器件供应商,IDM已成主流业态,如IR、Panasonic、Sanken和Transphorm等均是IDM企业。目前,对GaN功率器件企业的投资额还在不断增长,2012年7月AZZURRO融资了260万欧元发展8寸GaN-on-Si外延片,同年10月Transphorm又筹集了3500万美元发展GaN功率器件,今年5月UK政府资助NXP 200万英镑在Hazel Grove发展GaN功率器件。

  三、技术发展现状
  1、GaN-on-Si材料
  目前,4英寸和6英寸GaN-on-Si晶圆已经实现商用化,一些科研机构和公司相继报道了8英寸GaN-on-Si晶圆的研究成果。
  2012年新加坡IMRE报道了200mm AlGaN/GaN-on-Si(111)晶圆。
  同年,新加坡 The Institute of Microelectronics 和荷兰NXP宣布合作开发了200mm GaN-on-Si晶圆及功率器件技术。
  比利时IMEC、美国IR、美国IQE、日本Dowa和德国Azzurro等公司也正在开发200mm GaN-on-Si外延技术。
  现在4英寸及以上的大直径硅衬底上生长GaN外延技术正在快速发展并终会走向成熟,目前面临的主要问题如下:
  一是失配问题,硅衬底与GaN之间存在晶格常数失配、热膨胀系数失配和晶体结构失配。
  二是极性问题,由于Si原子间形成的健是纯共价键属非极性半导体,而GaN原子间是极性键属极性半导体。
  三是硅衬底上Si原子的扩散问题,降低了外延层的晶体质量。
  2、器件技术
  提高击穿电压:理论上在相同击穿电压下,GaN功率器件比Si和SiC功率器件的导通电阻更低,但是目前其性能远未达到理论值。研究发现主要原因是器件源漏间通过纵向贯通GaN缓冲层,沿Si衬底与GaN缓冲层界面形成了漏电。因此当前提高器件击穿电压的方案主要集中在以下三个方向:
  (1)改进衬底结构;(2)改进缓冲层结构;(3)改进器件结构。
  实现增强型(常关型)器件:基于AlGaN/GaN结构的器件是耗尽型(常开型)器件,而具有正阈值电压的增强型(常关型)功率器件能够确保功率电子系统的安全性、降低系统成本和复杂性等,是功率系统中的首选器件。因此,对于GaN功率器件而言,增强型器件实现也是研究者们极其关注的问题。目前国际上多采用凹槽栅、p-GaN栅和氟离子注入等方法直接实现增强型,另外,使用Cascode级连技术间接实现常关型。
  抑制电流崩塌效应:抑制电流崩塌的方法主要有以下几种:
  (1)表面钝化,表面钝化的问题是钝化工艺比较复杂,重复性较低,并不能完全消除电流崩塌效应,对器件的栅极漏电流和截止频率有影响,增加了器件的散热问题。
  (2)场板,2011年,美国HRL用三场板结构结合SiN钝化,实现了高耐压低动态电阻的Si基GaN功率器件,开关速度5us测试状态下,器件350V时动态与静态Ron之比1.2,600V时两者之比1.6。
  (3)生长冒层,如使用 p型GaN冒层来离化的受主杂质形成负空间电荷层,屏蔽表面势的波动对沟道电子的影响。该方法材料生长过程相对简单,易控制,但是增加了工艺难度,如栅极制作过程比较复杂。
  (4)势垒层掺杂,该方法增加了沟道电子浓度,或者减少了势垒层表面态密度,一般此种器件都生长了一薄层未掺杂的GaN或AlGaN冒层。
  制造工艺:GaN功率器件制造工艺与现有Si制造工艺兼容,是促进GaN功率器件产业化和广泛应用一个重要因素。开发与现有Si制造工艺兼容的GaN功率器件制造工艺的关键在于开发无金工艺。
  2012年,在ISPSD年会上IMEC报道了在8英寸GaN-on-Si晶圆上通过CMOS兼容无金工艺结合凹栅工艺制造的增强型GaN功率晶体管。
  2012年,在ISPSD年会上IMB-CNM-CSIC报道了在4英寸Si上使用CMOS兼容无金工艺制作了MIS-HEMT和i-HEMT。开发无金工艺最近几年受到了学术界和工业界的极大关注,是降低成本以实现大批量生产和大规模商业化应用的重要途径。
  3、功率集成技术
  形成独立且完整的包括GaN功率核心器件、器件驱动、保护电路和周边无源器件在内的直接面对终端应用的功能性模块,是目前GaN功率器件的发展方向。
  高度集成化的GaN智能功率集成技术将实现传统Si功率芯片技术所达不到的高性能、高工作安全性、高速和高温承受能力。在发展GaN功率器件技术的基础上,开发功率集成技术正逐渐成为近年来GaN研究领域的另一个热点。
  2008年,美国IR公司发布了基于Si衬底的GaN POL转换器,输入电压12V,12A的负载电流时输出电压1.2V,工作频率6MHz。
  2009年,美国MIT报道了利用晶片键合和选择性刻蚀制备出Si-GaN-Si晶片。
  2009年,陈万军等人报道了GaN-on-Si开关模式Boost转换器,K Y Wong等人成功实现了高压功率器件和外围低压器件的单片集成。
  2010年,Transphorm发布了分别基于AlGaN/GaN-on-Si和Si Sj-MOSFET的800KHz 220~400V Boost转换器。
  4、可靠性
  随着各项器件技术的不断进步,GaN器件已逐渐从实验室向工业界转移,可靠性已成为各界普遍关心的问题。相对于硅功率器件技术,GaN功率器件的可靠性和稳定性研究还相对滞后,器件退化规律、失效机制与模式、增强可靠性方法等虽有一些研究报告,但远不能满足器件走向大规模实际应用阶段的需要。
  影响GaN功率器件可靠性的原因比较复杂,包括材料质量、器件结构和器件工艺等多个方面,根据功率器件的工作模式特点和工作环境,GaN功率器件的可靠性研究重点主要包括以下几点:
  (1)栅泄漏电流与表面状态;(2)栅金属退化;(3)高电场和高温下热电子/热声子效应;(4)材料质量。

  四、产品相继推出
  随着GaN功率器件的成本降低、电气特性提高和周边技术的扩充,利用GaN功率器件的环境目前正在迅速形成,从2011年下半年至今已有很多企业相继推出了产品,并开始供货GaN功率器件,利用该器件的周边技术也越来越完善。

  美国EPC:
  2012年之前推出了耐压40~200V的系列产品;
  2013年5月EPC发布了开发板EPC9004,该板使用了200V的eGaN器件EPC2012,已开始供货;
  2013年6月EPC发布了降压变换器演示板EPC9107,该演示板使用了eGaN器件EPC2015和TI的栅驱动LM5113,已开始样品供货。

  美国Transphorm:
  在2012年发布了耐压600V的GaN类功率二级管、功率晶体管和功率模块;
  2013年5月,产品TPH3006PS、TPH3006PD、TPS3410PK和TPS3411PK已开始销售,把通过JEDEC标准的600V的GaN晶体管TPH3006PS用于电源设计,电源效率达97.5%。

  日本Fujitsu:
  2012年11月发布成功实现2.5KW的基于GaN功率器件的服务器电源单元;
  2013年7月展出了耐压30V、150V和600V三款Si基GaN功率器件,已开始样品供货,同时展出了采用600V耐压产品的服务器电源试制品。
  虽然GaN功率器件的实际性能与理论上的性能还存在差距,但就目前器件及其功能电路的测试结果来看,相比传统Si技术已具备十分明显的性能优势,随着GaN功率器件的材料质量、器件技术、功率集成技术和可靠性的逐渐成熟,GaN功率器件很有可能取代Si功率器件,成为功率电子应用中的首选技术方案。

  碳化硅和氮化镓的应用将影响功率电子产业
  据功率电子世界网站2014年10月14日报道:法国Yole Développement(Yole)公司的研究显示,如碳化硅(SiC)和氮化镓(GaN)材料技术的新型宽禁带技术将会重新定义部分已建立的功率电子产业。
  SiC和GaN材料的优势已众所周知。事实上,此类材料提供了更快的转换频率、更大的功率密度、更高的结点温度以及更优的电压性能。
  Yole 公司在欧洲半导体设备展览会的功率电子会议上分享其关于功率电子产业的愿景。会议期间,Yole公司将会参考新型材料如SiC和GaN的产品,详述功率电子产业现状及其技术发展趋势及相关参与者。
  从硅碳材料的角度分析,其一系列的应用已经成为一种主流趋势。可以预见在不久的将来,SiC将会在高压和超高电压(高达1.7kV)领域扮演非常重要的角色。
  Yole公司功率电子部门高级市场分析师Pierric•Gueguen表示“在Yole公司,我们坚信这些电压及相关功率范围正是SiC技术适用领域”。去年6月,Yole公司公布了其功率GaN的市场报告,同时也证实了GaN材料在功率电子市场的引入。
  Yole公司的分析师确定了其多种应用领域,尤其是用于低压范围如电源或功率因数校正领域的应用。据该份技术及市场分析报告显示,从2015至2018年电源及功率因数校正应用部分将成为商业主导,其销售额将占整体销售额的50%,。
  然而,伴随着新型宽禁带技术的应用,功率电子产业也将会面临新技术的挑战。事实上,现有的封装解决方案并不能很好的匹配GaN和SiC的特性。在此背景下,一些公司开发了一种增强型封装策略用以提升性能。
  据Yole公司称,基于该新型封装解决方案,到2016年功率模块市场份额将会达到2亿美元。(工业和信息化部电子科学技术情报研究所 徐博源 唐旖浓)

  氮化镓场效应晶体管
  氮化镓场效应晶体管(Gallium Nitride Field-effect Transistor)是一类以氮化镓以及铝氮化镓为基础材料的场效应晶体管。
  由于氮化镓材料具有好的散热性能、高的击穿电场、高的饱和速度,氮化镓场效应晶体管在大功率高频能量转换和高频微波通讯等方面有着远大的应用前景。
  目前,以氮化镓制备出了金属场效应晶体管(MESFET)、异质结场效应晶体管(HFET)、调制掺杂场效应晶体管(MODFET)等新型器件。
  与其同等的硅场效应晶体管相比,氮化镓场效应晶体管具有栅极电容较低、栅极驱动电压较低和额定电压能力较高等优势。
  2010年,国际整流器公司推出行业首个商用功率级氮化镓场效应晶体管产品。
  随后,德州仪器、贝克瓦特集团、恩智浦半导体等公司也先后推出了采用氮化镓场效应晶体管的数字电源转换解决方案。

  碳化硅和氮化镓:第三代半导体材料双雄
  第三代半导体材料双雄并立,难分高下
  进入21世纪以来,随着摩尔定律的失效大限日益临近,寻找半导体硅材料替代品的任务变得非常紧迫。在多位选手轮番登场后,有两位脱颖而出,它们就是氮化镓(GaN)和碳化硅(SiC),—并称为第三代半导体材料的双雄。
  SiC早在1842年就被发现了,但直到1955年,才有生长高品质碳化硅的方法出现;到了1987年,商业化生产的SiC进入市场;进入21世纪后,SiC的商业应用才算全面铺开。相对于Si,SiC的优点很多:有10倍的电场强度,高3倍的热导率,宽3倍禁带宽度,高一倍的饱和漂移速度。因为这些特点,用SiC制作的器件可以用于极端的环境条件下。微波及高频和短波长器件是目前已经成熟的应用市场。42GHz频率的SiC MESFET,用在了军用相控阵雷达、通信广播系统中,用SiC做为衬底的高亮度蓝光LED则是全彩色大面积显示屏的关键器件。
  现在,SiC材料正在大举进入功率半导体领域。一些知名的半导体器件厂商,如ROHM,英飞凌,Cree,飞兆等都在开发自己的SiC功率器件。英飞凌公司在今年推出了第五代SiC肖特基势垒二极管,其结合了第三代产品的低容性电荷(Qc)值与第二代产品的正向电压(Vf)水平相结合,使PFC电路达到最高效率水平,击穿电压则达到了650V。飞兆半导体发布了SiC BJT,其实现了1200V的耐压,传到和开关损耗相对于传统的Si器件降低了30~50%,从而能够在相同尺寸的系统中实现高达40%的输出功率提升。
  ROHM公司则推出了1200V的第二代SiC制MOSFET产品,其实现了SiC-SBD与SiC-MOSFET的一体化封装,比Si-IGBT相比,工作损耗降低了70%,并可达到50kHz以上的开关频率。值得一提的是,IGBT的驱动比较复杂,如果使用SiC基的MOSFET,则能使系统开发的难度大为降低。SiC的市场颇为被看好,根据预测,到2022年,其市场规模将达到40亿美元,年平均复合增长率可达到45%。
  说完了SiC,再来说说GaN。在上世纪90年代以前,因为缺乏合适的单晶衬底材料,而且位错密度比较大,其发展缓慢,但进入90年代以后,其发展迅速,年均增长率达30%,已经成为大功率LED的关键性材料。同SiC一样,GaN也开始进军功率器件市场。虽然,2012年的GaN市场上,IR和EPC公司是仅有的两家器件供应商,但是到明年,可能会有多家公司推出自己的产品。如果这些厂家在2014年扩充产能,在2015年推出600V耐压的GaN功率器件,整个市场的发展空间将得到极大地扩充。
  GaN的起步较SiC为早,但是SiC的发展势头更快。在早期,两者因应用领域不同,直接竞争的机会并不大。但随着功率半导体市场向两者打开,短兵相接就不可避免了。工业、新能源领域已经成为两者的战场,而在汽车领域,因为价格原因,厂商虽愿意采用传统的Si器件。不过,随着GaN和SiC的快速发展,成本越来越接近Si器件,大规模登陆这个市场的时间应该不远了。
  现在,Si晶圆的主流尺寸已经达到300mm(12英寸),但是SiC和GaN只能做到150mm(6英寸),这个差别的弥补还是需要一段时间的。但是对于半导体业界,投资者和大众来说,出现了能挑战传统势力的新贵,还是非常有意义的。在持续的关注和投入下,这两者肯定能开出绚烂的花朵。
  图:碳化硅和氮化镓:第三代半导体材料双雄→浏览下载
--------------------------------------------------
 【更多资讯关注微信公众号:SZHHE-COM     本月推广:主打产品型号目录与参数选型→浏览下载
--------------------------------------------------  
来源-中国可控硅信息中心   打印 打印该页
相关资讯
·Mophie推出能给汽车救援的充电宝 (1-9)
·电动汽车未来等待石墨烯产业崛起 (7-11)
·因缺少一个关键元件,中国的数码单反遥遥无期 (6-6)
·英飞凌推出高功率高效率应用的高压MOSFET (4-5)
·罗姆音频IC研发成功,可播放各种音源格式 (3-21)
·当石墨烯遇上锂电池,石墨烯迎产业化良机 (9-7)

 
最新资讯
暂无资讯

热门资讯
·著名半导体厂家网址
·MCR8SN 高灵敏度单向可控硅
·有关ST,PHILIPS等公司无
·Richtek-台湾立琦科技
·双向可控硅的命名
·C106D-HC106D-单向可
·BTA41-1200B特制高压双
·Z0405MF-双向可控硅
·BT136S-600D贴片双向可
·可控硅元件的符号说明
·可控硅元件的电压说明
·MCR22-8 单向可控硅
·场效应管的基础知识
·BT137S-600E贴片双向可
·三象限与四象限有何区别?
·怎样判别二极管的极性
·BT151S-500R贴片可控硅
·BTA100-1200B
·X0605MA全新原装ST产品
·BT136-600E 全新供应
·Micron-镁光科技
·ASE-台湾日月光半导体
·单向可控硅的命名
·BT138X-600F全塑封可控
·40A三端双向可控硅电压可提升至
·可控硅的应用原则
·世界上通用的可控硅型号
·BT136S-600E SMD
·Mikron-俄罗斯芯片厂商-米
·参加阿里巴巴竞价历史记录

Copyright ©2003-  KKG.com.cn  Tel:(86)-755-27832599278324992995508029955090FAX: 27801767

 浩海电子 可控硅 二极管 三极管 三极管 单向可控硅 双向可控硅
技术支持:爱学海iXueHai.cn 粤ICP备10237964号-1 中国企业官网大联盟 

访问统计: